基于单目视觉的仓储物流搬运AGV 累积误差检测方法研究

2022-10-28 10:43

  式中:xt 为第t 个定位块的中心点在图像坐标系o1 − x1y1下的横坐标, yt 为第t 个定位块的中心点在图像坐标系o1 − x1y1 下的纵坐标,n 为第t 个定位块中黑色像素点的总个数,xi 为第t 个定位块中第i 个黑色像素点在图像坐标系o1 − x1y1下的横坐标,yi 为第t 个定位块中第i 个黑色像素点在图像坐标系o1 − x1y1 下的纵坐标。利用式(1) 可以计算出集合A 中每个元素对应的中心点坐标oi,所有中心点构成集合O,即O={ o 1,o 2,o 3,……,on }。对于所述方法,O={ o 1,o 2,o 3 }。任意两定位块中心点之间的距离

image.png

  式中:h 为摄像头的安装高度,f 为摄像头的焦距,xi 为中心点oi 在图像坐标系o1 − x1y1下的横坐标,yi 为中心点oi 在图像坐标系o1 − x1y1下的纵坐标,xj 为中心点oj 在图像坐标系o1 − x1y1 下的横坐标,yj 为中心点oj在图像坐标系o1 − x1y1下的纵坐标。i、j k 分别取1、2、3 且互不相同。当dk 取得最大值时中心点及对应边长如图3 所示。

image.png

图3 中心点及对应边长

  

        中心点ok 对应定位块A,记中心点ok 的坐标为(xk,yk),取中心点oi(xi,yi),构建向量*,利用式(3)判断中心点oj(xj,yj)与向量*之间的关系,有

image.png

        当t > 0,点oj 在oi 的左侧,中心点oi 对应定位块B ,中心点oj 对应定位块C ;当t < 0,点oj 在oi 的右侧,中心点oi 对应定位块C ,中心点oj 对应定位块B 。确定定位块中心点在图像坐标系o1 − x1y1下的坐标,将定位块A、B 、C 的中心点在图像传感器上的投影记为A(xa , ya ), B(xb , yb ),C(xc , yc )。

  3 累积误差计算模型

  图像坐标系o1 − x1y1与信标投影坐标系o′ − x′y′之间的旋转、平移关系模型如图4 所示。图中,dx 为AGV 在信标坐标系下X 轴方向上位置累积误差,dy 为AGV 在信标坐标系下Y 轴方向上位置累积误差,θx 为AGV 在信标坐标系下X 轴方向上航向角累积误差,θy 为AGV 在信标坐标系下Y 轴方向上航向角累积误差,有

image.png

图4 累计误差计算模型

image.png

  4 实验结果

  实验采用无畸变摄像头,将其安装于AGV 的回转中心并与地面保持平行,拍摄位于地面的特定信标。利用所述方法计算在任意位置下的位置偏差和角度偏差,将实际测量值与计算结果进行比较。每次实验进行20次计算,进行6 次独立重复实验。选取第1 次、第10 次、第20 次的实验结果和实际测量结果,如表1 所示。第1 次独立重复实验的计算结果与实际测量结果进行比较,误差如图5 所示。图5 计算结果与测量结果之间的误差由表1 可知,每次独立重复实验计算结果,dx、dy的波动不超过1 mm,θ 的波动不超过0.5°,说明本方法计算结果具有较高的稳定性。从图5 可以看出,每次独立重复实验计算结果与实际测量结果相比较,dx、dy的误差不超过1 mm,θ 的误差不超过1°,说明本方法具有较高的准确度。6 次独立重复实验的计算结果与实际测量结果相比较,结果都在误差允许范围内,说明本方法具有较高的可靠性。

  5 结语

  从信标特征识别开始到定位偏差计算,研究了一种用于仓储物流搬运AGV 运动累积误差检测方法。针对特定的信标,在特征提取中使用栅格对二值图像进行分割,对栅格单元进行聚类,利用平均值算法计算信标中定位块的中心点坐标,建立图像与世界坐标系的旋转、平移关系模型,计算仓储物流搬运AGV 在世界坐标系下的位姿。最后通过实验测量,将计算结果与测量结果比较,证明所述方法具有较高精度、稳定性和可靠性。进一步提高图像处理速度和提高定位精度是下一步研究重点。

10秒快速发布需求

让物流专家来找您